Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

نویسندگان

  • Francesco Morichetti
  • Antonio Canciamilla
  • Carlo Ferrari
  • Antonio Samarelli
  • Marc Sorel
  • Andrea Melloni
چکیده

Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Data transmission in optical systems and increased transmission distance capacity benefit by using optical amplification wavelength division multiplexing (WDM) technology. The combination of four waves (FWM) is a non-linear effect in the wavelength division multiplex (WDM), when more than two wavelengths of light in a fiber launch will occur. FWM amount depends on the channel, the channel spaci...

متن کامل

Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing.

We propose and demonstrate mode coupling as a viable dispersion compensation technique for phase-matched resonant four-wave mixing (FWM). We demonstrate a dual-cavity resonant structure that employs coupling-induced frequency splitting at one of three resonances to compensate for cavity dispersion, enabling phase matching. Coupling strength is controlled by thermal tuning of one cavity enabling...

متن کامل

Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation.

We propose coupled-cavity triply-resonant systems for degenerate-pump four-wave mixing (FWM) applications that support strong nonlinear interaction between distributed pump, signal and idler modes, and allow independent coupling of the pump mode and signal/idler modes to separate ports based on nonuniform supermode profile. We demonstrate seeded FWM with wavelength conversion efficiency of -54 ...

متن کامل

Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide.

We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler base...

متن کامل

Four-Wave Mixing in Photonic Crystal Fibres for Wavelength Conversion in Optical Networks

Four-Wave Mixing is one of the few all-optical techniques which provides fully transparent wavelength conversion. Here, we demonstrate Four-Wave Mixing generation in a band of up to 20 nm centred at the zero dispersion wavelength of a photonic crystal fibre (1560 nm). A stable efficiency around -35 dB is maintained across the band using a pump power of 10 dBm. The experimental results are in go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011